1

RAMAKRISHNA MISSION VIDYAMANDIRA (A Residential Autonomous College under University of Calcutta) First Year First-Semester Examination, December 2010					
			Date	15-12-2010 MATHEMATICS (Honours)	Full Marks : 100
Time	11am – 3pm Paper - I				
(Use separate answer script for each group)					
	<u>Group – A</u>				
1. a) Answer <u>any one</u> question :					
	i) Let S be a non-empty subset of \mathbb{R} , (\mathbb{R} is the set of real numbers) T = {-x : x \in S}. Prove that the set T is bounded below and inf T = - su				
	ii) Prove that for a positive real number x there exists a natural m				
L)	$m-1 \le x < m$.	[2]			
b)	Answer <u>any one</u> question :i) Prove that the set of rational numbers is enumerable.	[3]			
	, 1				
	ii) Prove that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.	[3]			
Answer <u>any three</u> from Question no. 2 to Question no. 6 $[3 \times 5 = 15]$					
2. a)	Show that the union of finite number of open sets of real numbers is an oper	n set.			
b)	If A and B are subsets of real numbers prove that $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$	B). [3+2]			
3. Sta	te and prove Bolzano-Weierstrass theorem for infinite point sets.	[1+4]			
4. a)	Show that a monotone increasing sequence of real numbers which is bounded above is convergent.				
b)	Prove that the sequence $\{u_n\}_{n \in \mathbb{N}}$ defined by $u_1 = \sqrt{6}$, $u_{n+1} = \sqrt{6+u_n}$ for $n \ge 1$	1 is convergent.[3+2]			
5. a)	Show that a bounded sequence $\{x_n\}_{n\in\mathbb{N}}$ is convergent if and only if $\overline{\lim} x_n =$	$\underline{\lim} \mathbf{x}_{n}$.			
b)	Let I = (a,b) be a bounded open interval and $f: I \rightarrow \mathbb{R}$ be a monotone increase	asing function on I. If			
	f is bounded below on I, then show that $\lim_{x\to a^+} f(x) = \inf_{x\in(a,b)} f(x)$.	[3+2]			
6. a)	Let $S = \left\{\frac{1}{m} + \frac{1}{n}; m, n \text{ are narural numbers}\right\}$. Show that 0 is a limit point of S	5.			
b)	b) Using Cauchy criterion for the existence of limit, prove that for the function $f:(0,1) \to \mathbb{R}$				
	defined by, $f(x) = 1$, if x is rational, $x \in (0,1)$.				
	$=-1$, if x is irrational, $x \in (0,1)$				
	$\lim_{x \to 0} f(x)$ does not exist when $a \in [0,1]$.	[2+3]			
7. An	swer any two questions :	$[2 \times 3 = 6]$			
		[]			

- a) For any three sets A, B, C prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. [3]
- b) Prove that each partition of a set S yields an equivalence relation on S. [3]

c) Let A, B be two non-empty sets and $f: A \to B$ be a bijective mapping. Prove that the mapping $f^{-1}: B \to A$ is also a bijection. [3]

Answer **any four** questions from Question no. 8 to Question no. 14. $[6 \times 4 = 24]$

- 8. a) Let X be a non-empty set. Prove that there does not exist any surjective map from X onto P(X), the power set of X.
 - b) Prove that the relation ρ on \mathbb{R} defined by 'x ρ y iff x y $\in Q$ (x, y $\in \mathbb{R}$)' is an equivalence relation. Find the equivalence class containing the element '0'. [2+1]
- 9. a) Prove that the necessary and sufficient condition, that a non-empty subset H of a group (G, \cdot) is a subgroup of G is that $a, b \in H \Longrightarrow a.b^{-1} \in H$.

b) Let
$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 7 & 5 & 2 & 3 & 1 \end{pmatrix}$$
 be an element of S₇. Is a^{-1} an even permutation? [4+2]

- 10. Define the centre of a group. If G is a non-commulative group of order 10 then show that G has a trivial centre. [1+5]
- 11. a) In a group $(G, \cdot) a^3 = e$ (the identity of G) and $a.b.a^{-1} = b^2$ $(a, b \in G)$; find the order of b if $b \neq e$.
 - b) If (H, \cdot) be a sub-group of a group (G, \cdot) , prove that the two left-cosets of H in G are either disjoint or identical. [2+4]
- 12. Show that all the proper subgroups of the symmetric group S_3 are cyclic. Prove that every cyclic group is abelian. Give an example of an abelian group which is not cyclic. [2+2+2]
- 13. a) Let n > 1 be an integer. Prove that the characteristic of the ring Z_n is n.
 - b) Prove that a finite integral domain is a field. [2+4]
- 14. a) Give examples of two subfields K_1 , K_2 of a field F such that $K_1 \cup K_2$ fails to be a subfield of F.
 - b) Prove that the field Q of all rational numbers has no proper subfield.
 - c) Give an example with justification of a finite field containing more than 25 elements. [2+2+2]

<u>Group – B</u>

Answer Question No. 15 and 20 and any two from Question No. 16-19

- 15. Answer any one question :
 - a) Obtain the differential equation of all circles each of which touches the axis of x at the origin. [5]
 - b) Find an integrating factor of the differential equation : $(y^2 + 2x^2y)dx + (2x^3 - xy)dy = 0$ and hence solve it. [2+3 = 5]
- 16. a) Reducing the differential equation $x^2p^2 + py(2x+y) + y^2 = 0$ to Clairaut's form by the Substitutions y = u, xy = v, solve it and prove that y+4x = 0 is a singular solution. [3+2]
 - b) By the use of symbolic operator D, find the solution of the equation :

$$x^{3}\frac{d^{3}y}{dx^{3}} + 2x^{2}\frac{d^{2}y}{dx^{2}} + 2y = 10\left(x + \frac{1}{x}\right).$$
[5]

17. a) Show that if y_1 and y_2 be solutions of the equation $\frac{dy}{dx} + Py = Q$ where P and Q are functions of x

alone and $y_2 = y_1 Z$ then $Z = 1 + ae^{-\int \frac{Q}{y_1} dx}$ (a is an arbitrary constant). [5]

- b) By the method of undetermined coefficients find the solution of the equation : $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = e^x + x^2.$ [5]
- 18. a) Solve by the method of variation of parameters, $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} \frac{1}{x^2}y = \log x (x > 0)$ [5]
 - b) Show that the equation $(1 + x + x^2)\frac{d^3y}{dx^3} + (3 + 6x)\frac{d^2y}{dx^2} + 6\frac{dy}{dx} = 0$ is exact and hence solve it. [1+4]
- 19. a) Find an integrating factor of the equation $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y x^2y^2 3x)dy = 0$ and hence solve it. [2+3]

b) Solve:
$$y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = y^2 \log x$$
. [5]

20. Answer any five questions :

- a) Line segments are drawn from a vertex of a parallelogram to the mid-points of the opposite sides. Show that they trisect a diagonal. [5]
- b) If three vectors $\vec{a}, \vec{b}, \vec{c}$ be expressed as a linear combination of three non-coplanar vectors $\vec{l}, \vec{m}, \vec{n}$ as $\vec{a} = a_1 \vec{l} + a_2 \vec{m} + a_3 \vec{n}, \vec{b} = b_1 \vec{l} + b_2 \vec{m} + b_3 \vec{n}$ and $\vec{c} = c_1 \vec{l} + c_2 \vec{m} + c_3 \vec{n}$ then show that their scalar product $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \begin{bmatrix} \vec{l} & \vec{m} & \vec{n} \end{bmatrix}$ [5]
- c) i) Prove that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if $(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$ [3]
 - ii) Solve for the scalars y and z satisfying $y\vec{a} + z\vec{b} = \vec{c}$, where \vec{a}, \vec{b} are given non-collinear vectors. [2]
- d) A force of magnitude 15 unit acts in the direction of the vector $\hat{i} 2\hat{j} + 2\hat{k}$ and passes through the point $2(\hat{i} \hat{j} + \hat{k})$. Find the moment of the force about the point $\hat{i} + \hat{j} + \hat{k}$. [5]
- e) Show that the necessary and sufficient condition that a proper vector \vec{u} always remains parallel to a fixed line is that $\vec{u} \times \frac{d\vec{u}}{dt} = \vec{0}$. [5]
- f) i) Find the maximum value of the directional derivative of $\phi = x^2 + z^2 y^2$ at the point (1,3,2). Find also the direction in which it occurs. [1+1]

ii) Prove that
$$\operatorname{Curl}\left\{\frac{\vec{a} \times \vec{r}}{r^3}\right\} = \frac{\vec{a}}{r^3} + \frac{3}{r^5}(\vec{a}.\vec{r})\vec{r}$$
 where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and \vec{a} is a constant vector. [3]

- g) Find the shortest distance between the two lines through A(6, 2, 2) and C(-4, 0, -1) and parallel to the vectors (1, -2, 2) and (3, -2, -2) respectively. Find the points where the lines meet the line of shortest distance.
- h) Show that the vector field determined by grad f is always irrotational and the vector field determined by curl \vec{F} is always solenoidal. [5]